Nederlands
nl
English
en
contact veelgestelde vragen
log in
VU
 
Riemann-Roch Algebra
Hoofdkenmerken
Auteur: Fulton, William
Redactie: Springer-Verlag New York Inc.
Titel: Riemann-Roch Algebra
Uitgever: Van Ditmar Boekenimport B.V.
ISBN: 9780387960869
Serie: Grundlehren der mathematischen
Editie: 1. ed
Land van oorsprong: United States
Prijs: € 91,36
Verschijningsdatum: 01-01-2007
Bericht: Langere levertijd (2-3 weken)
Inhoudelijke kenmerken
Categorie: Wiskunde alg.
Taal: Engels
Dewey code: 512
Technische kenmerken
Verschijningsvorm: Hardback
Paginas: 220
Hoogte mm.: 234
Breedte mm.: 156
 

Inhoud:

[Annotatie]: In various contexts of topology, algebraic geometry, and algebra (e.g. group representations), one meets the following situation. One has two contravariant functors K and A from a certain category to the category of rings, and a natural transformation p:K--+A of contravariant functors. The Chern character being the central exam­ ple, we call the homomorphisms Px: K(X)--+ A(X) characters. Given f: X--+ Y, we denote the pull-back homomorphisms by and fA: A(Y)--+ A(X). As functors to abelian groups, K and A may also be covariant, with push-forward homomorphisms and fA: A( X)--+ A(Y). Usually these maps do not commute with the character, but there is an element r f E A(X) such that the following diagram is commutative: K(X)~A(X) fK j J~A K( Y) ------p;-+ A( Y) The map in the top line is p x multiplied by r f. When such commutativity holds, we say that Riemann-Roch holds for f. This type of formulation was first given by Grothendieck, extending the work of Hirzebruch to such a relative, functorial setting. Since then viii INTRODUCTION several other theorems of this Riemann-Roch type have appeared. Un­ derlying most of these there is a basic structure having to do only with elementary algebra, independent of the geometry. One purpose of this monograph is to describe this algebra independently of any context, so that it can serve axiomatically as the need arises.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
VUBOEKHANDEL.NL VU Boekhandel boekverkopers sinds 1967