Nederlands
nl
English
en
contact veelgestelde vragen
log in
VU
 
Learning and Generalisation
Hoofdkenmerken
Auteur: Mathukumalli Vidyasagar
Titel: Learning and Generalisation
Uitgever: Springer Nature
ISBN: 9781447137481
ISBN boekversie: 9781849968676
Editie: 2
Prijs: € 203,82
Verschijningsdatum: 14-03-2013
Inhoudelijke kenmerken
Categorie: Electrical
Taal: English
Imprint: Springer
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

Learning and Generalization provides a formal mathematical theory addressing intuitive questions of the type: • How does a machine learn a concept on the basis of examples? • How can a neural network, after training, correctly predict the outcome of a previously unseen input? • How much training is required to achieve a given level of accuracy in the prediction? • How can one identify the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite time? The second edition covers new areas including: • support vector machines; • fat-shattering dimensions and applications to neural network learning; • learning with dependent samples generated by a beta-mixing process; • connections between system identification and learning theory; • probabilistic solution of 'intractable problems' in robust control and matrix theory using randomized algorithms. It also contains solutions to some of the open problems posed in the first edition, while adding new open problems.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
VUBOEKHANDEL.NL VU Boekhandel boekverkopers sinds 1967