Nederlands
nl
English
en
contact veelgestelde vragen
log in
VU
 
Privacy-Preserving Machine Learning
Hoofdkenmerken
Auteur: Jin Li; Ping Li; Zheli Liu; Xiaofeng Chen; Tong Li
Titel: Privacy-Preserving Machine Learning
Uitgever: Springer Nature
ISBN: 9789811691393
ISBN boekversie: 9789811691386
Prijs: € 71.93
Verschijningsdatum: 14-03-2022
Inhoudelijke kenmerken
Categorie: Security
Taal: English
Imprint: Springer
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
VUBOEKHANDEL.NL VU Boekhandel boekverkopers sinds 1967